We prove Welters’ trisecant conjecture: an indecomposable principally polarized abelian variety $X$ is the Jacobian of a curve if and only if there exists a trisecant of its Kummer variety $K(X)$.

[arb-decon] E. Arbarello and C. De Concini, "On a set of equations characterizing Riemann matrices,"

*Ann. of Math.*, vol. 120, iss. 1, pp. 119-140, 1984.Show bibtex

`@article {arb-decon, MRKEY = {750718},`

AUTHOR = {Arbarello, Enrico and De Concini, Corrado},

TITLE = {On a set of equations characterizing {R}iemann matrices},

JOURNAL = {Ann. of Math.},

FJOURNAL = {Annals of Mathematics. Second Series},

VOLUME = {120},

YEAR = {1984},

NUMBER = {1},

PAGES = {119--140},

ISSN = {0003-486X},

CODEN = {ANMAAH},

MRCLASS = {14H40 (14K20 14K25 32G20)},

MRNUMBER = {86a:14025},

MRREVIEWER = {Gerald E. Welters},

DOI = {10.2307/2007073},

ZBLNUMBER = {0551.14016},

}[arbarello] E. Arbarello and C. De Concini, "Another proof of a conjecture of S. P. Novikov on periods of abelian integrals on Riemann surfaces,"

*Duke Math. J.*, vol. 54, iss. 1, pp. 163-178, 1987.Show bibtex

`@article {arbarello, MRKEY = {885782},`

AUTHOR = {Arbarello, Enrico and De Concini, Corrado},

TITLE = {Another proof of a conjecture of {S}. {P}. {N}ovikov on periods of abelian integrals on {R}iemann surfaces},

JOURNAL = {Duke Math. J.},

FJOURNAL = {Duke Mathematical Journal},

VOLUME = {54},

YEAR = {1987},

NUMBER = {1},

PAGES = {163--178},

ISSN = {0012-7094},

CODEN = {DUMJAO},

MRCLASS = {14H40 (32G20 58F07)},

MRNUMBER = {88i:14025},

MRREVIEWER = {Bert van Geemen},

DOI = {10.1215/S0012-7094-87-05412-3},

ZBLNUMBER = {0629.14022},

}[flex] E. Arbarello, I. Krichever, and G. Marini, "Characterizing Jacobians via flexes of the Kummer variety,"

*Math. Res. Lett.*, vol. 13, iss. 1, pp. 109-123, 2006.Show bibtex

`@article {flex, MRKEY = {2200050},`

AUTHOR = {Arbarello, Enrico and Krichever, Igor and Marini, Giambattista},

TITLE = {Characterizing {J}acobians via flexes of the {K}ummer variety},

JOURNAL = {Math. Res. Lett.},

FJOURNAL = {Mathematical Research Letters},

VOLUME = {13},

YEAR = {2006},

NUMBER = {1},

PAGES = {109--123},

ISSN = {1073-2780},

MRCLASS = {14H42 (14H40)},

MRNUMBER = {2007b:14064},

MRREVIEWER = {H. Lange},

ZBLNUMBER = {1098.14020},

}[ch1] J. L. Burchnall and T. W. Chaundy, "Commutative ordinary differential operators. I,"

*Proc. London Math. Soc.*, vol. 21, pp. 420-440, 1922.Show bibtex

`@article{ch1,`

author={Burchnall, J. L. and Chaundy, T. W.},

TITLE={Commutative ordinary differential operators. {\rm I}},

JOURNAL={Proc. London Math. Soc.},

VOLUME={21},

YEAR={1922},

PAGES={420--440},

}[ch2] J. L. Burchnall and T. W. Chaundy, "Commutative ordinary differential operators. II,"

*Proc. Royal Soc. London*, vol. 118, pp. 557-583, 1928.Show bibtex

`@article{ch2,`

author={Burchnall, J. L. and Chaundy, T. W.},

TITLE={Commutative ordinary differential operators. {\rm II}},

JOURNAL={Proc. Royal Soc. London},

VOLUME={118},

YEAR={1928},

PAGES={557--583},

}[mdl] P. Deligne and D. Mumford, "The irreducibility of the space of curves of given genus,"

*Inst. Hautes Études Sci. Publ. Math.*, iss. 36, pp. 75-109, 1969.(Video) Robert Auffarth--The Schottky Problem and secants of the Kummer varietyShow bibtex

`@article {mdl, MRKEY = {0262240},`

AUTHOR = {Deligne, P. and Mumford, D.},

TITLE = {The irreducibility of the space of curves of given genus},

JOURNAL = {Inst. Hautes Études Sci. Publ. Math.},

FJOURNAL = {Institut des Hautes Études Scientifiques. Publications Mathématiques},

NUMBER = {36},

YEAR = {1969},

PAGES = {75--109},

ISSN = {0073-8301},

MRCLASS = {14.20},

MRNUMBER = {41 \#6850},

MRREVIEWER = {Manfred Herrmann},

URL = {http://www.numdam.org/item?id=PMIHES_1969__36__75_0},

ZBLNUMBER = {0181.48803},

}[fay] J. D. Fay,

*Theta Functions on Riemann Surfaces*, New York: Springer-Verlag, 1973, vol. 352.Show bibtex

`@book {fay, MRKEY = {0335789},`

AUTHOR = {Fay, John D.},

TITLE = {Theta Functions on {R}iemann Surfaces},

SERIES = {Lecture Notes in Math.},

VOLUME={352},

PUBLISHER = {Springer-Verlag},

ADDRESS = {New York},

YEAR = {1973},

PAGES = {iv+137},

MRCLASS = {30A48 (14H15)},

MRNUMBER = {49 \#569},

MRREVIEWER = {H. M. Farkas},

ZBLNUMBER = {0281.30013},

}[gun1] R. C. Gunning, "Some curves in abelian varieties,"

*Invent. Math.*, vol. 66, iss. 3, pp. 377-389, 1982.Show bibtex

`@article {gun1, MRKEY = {662597},`

AUTHOR = {Gunning, R. C.},

TITLE = {Some curves in abelian varieties},

JOURNAL = {Invent. Math.},

FJOURNAL = {Inventiones Mathematicae},

VOLUME = {66},

YEAR = {1982},

NUMBER = {3},

PAGES = {377--389},

ISSN = {0020-9910},

CODEN = {INVMBH},

MRCLASS = {14K10 (14H15 14K25 32G20)},

MRNUMBER = {83i:14033},

MRREVIEWER = {H. H. Martens},

DOI = {10.1007/BF01389218},

ZBLNUMBER = {0485.14009},

}[kr1] I. M. Krichever, "Integration of nonlinear equations by methods of algebraic geometry,"

*Funct. Anal. Appl.*, vol. 11, pp. 12-26, 1977.Show bibtex

`@article{kr1,`

author = {Krichever, I. M.},

TITLE={Integration of nonlinear equations by methods of algebraic geometry},

JOURNAL={Funct. Anal. Appl.},

VOLUME={11},

YEAR={1977},

PAGES={12--26},

ZBLNUMBER={0368.35002},

}[kr2] I. M. Krichever, "Methods of algebraic geometry in the theory of nonlinear equations,"

*Russian Math. Surveys*, vol. 32, pp. 185-213, 1977.Show bibtex

`@article{kr2,`

author = {Krichever, I. M.},

TITLE={Methods of algebraic geometry in the theory of nonlinear equations},

JOURNAL={Russian Math. Surveys},

VOLUME={32},

YEAR={1977},

PAGES={185--213},

ZBLNUMBER={0386.35022},

}[kr-dif] I. M. Krichever, "Algebraic curves and nonlinear difference equations,"

*Uspekhi Mat. Nauk*, vol. 33, iss. 4(202), pp. 215-216, 1978.Show bibtex

(Video) Rationality for Threefolds Over Non-Closed Fields`@article {kr-dif, MRKEY = {510681},`

AUTHOR = {Krichever, I. M.},

TITLE = {Algebraic curves and nonlinear difference equations},

JOURNAL = {Uspekhi Mat. Nauk},

FJOURNAL = {Akademiya Nauk SSSR i Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},

VOLUME = {33},

YEAR = {1978},

NUMBER = {4(202)},

PAGES = {215--216},

ISSN = {0042-1316},

MRCLASS = {58F07 (39A70)},

MRNUMBER = {80k:58055},

MRREVIEWER = {Alexander A. Pankov},

ZBLNUMBER={0382.39003},

}[kr3] I. M. Krichever, "Elliptic solutions of the Petviashvili equation, and integrable systems of particles,"

*Funktsional. Anal. i Prilozhen.*, vol. 14, iss. 4, pp. 45-54, 95, 1980.Show bibtex

`@article {kr3, MRKEY = {595728},`

AUTHOR = {Krichever, I. M.},

TITLE = {Elliptic solutions of the Petviashvili equation, and integrable systems of particles},

JOURNAL = {Funktsional. Anal. i Prilozhen.},

FJOURNAL = {Akademiya Nauk SSSR. Funktsional$'$nyĭAnaliz i ego Prilozheniya},

VOLUME = {14},

YEAR = {1980},

NUMBER = {4},

PAGES = {45--54, 95},

ISSN = {0374-1990},

MRCLASS = {58F07 (14H45 35Q20 70M99)},

MRNUMBER = {82e:58046},

MRREVIEWER = {Alexander A. Pankov},

ZBLNUMBER={0462.35080},

}[kr-toda] I. M. Krichever, "The periodic nonabelian Toda lattice and two-dimensional generalization, appendix to: B. Dubrovin, Theta functions and non-linear equations,"

*Uspekhi Math. Nauk*, vol. 36, pp. 72-77, 1981.Show bibtex

`@article{kr-toda,`

author = {Krichever, I. M.},

TITLE={The periodic nonabelian Toda lattice and two-dimensional generalization, appendix to: B. Dubrovin, Theta functions and non-linear equations},

JOURNAL={Uspekhi Math. Nauk},

VOLUME={36},

YEAR={1981},

PAGES={72--77},

}[krdd] I. M. Krichever, "Two-dimensional periodic difference operators and algebraic geometry,"

*Dokl. Akad. Nauk SSSR*, vol. 285, iss. 1, pp. 31-36, 1985.Show bibtex

`@article {krdd, MRKEY = {812140},`

AUTHOR = {Krichever, I. M.},

TITLE = {Two-dimensional periodic difference operators and algebraic geometry},

JOURNAL = {Dokl. Akad. Nauk SSSR},

FJOURNAL = {Doklady Akademii Nauk SSSR},

VOLUME = {285},

YEAR = {1985},

NUMBER = {1},

PAGES = {31--36},

ISSN = {0002-3264},

MRCLASS = {58F07 (14K25 35Q20 39A70)},

MRNUMBER = {87c:58049},

MRREVIEWER = {Alexander A. Pankov},

ZBLNUMBER = {0603.39004},

}[kr-schot] I. M. Krichever, "Integrable linear equations and the Riemann-Schottky problem," in

*Algebraic Geometry and Number Theory*, Boston, MA: Birkhäuser, 2006, pp. 497-514.Show bibtex

`@incollection {kr-schot, MRKEY = {2263198},`

AUTHOR = {Krichever, I. M.},

TITLE = {Integrable linear equations and the {R}iemann-{S}chottky problem},

BOOKTITLE = {Algebraic Geometry and Number Theory},

SERIES = {Progr. Math.},

NUMBER = {253},

PAGES = {497--514},

PUBLISHER = {Birkhäuser},

ADDRESS = {Boston, MA},

YEAR = {2006},

MRCLASS = {14H70 (14H42 37K20)},

MRNUMBER = {2007h:14049},

MRREVIEWER = {Armando K. Treibich},

DOI = {10.1007/978-0-8176-4532-8_8},

ZBLNUMBER = {1132.14032},

}[prym] I. M. Krichever, "A characterization of Prym varieties,"

*Int. Math. Res. Not.*, vol. 2006, p. I, 2006.Show bibtex

`@article {prym, MRKEY = {2233714},`

AUTHOR = {Krichever, I. M.},

TITLE = {A characterization of {P}rym varieties},

JOURNAL = {Int. Math. Res. Not.},

FJOURNAL = {International Mathematics Research Notices},

YEAR = {2006},

PAGES = {Art. ID 81476, 36},

ISSN = {1073-7928},

MRCLASS = {14H40 (14H42 14H70 37K20)},

MRNUMBER = {2007k:14059},

MRREVIEWER = {Emma Previato},

VOLUME = {2006},

}[bete] I. M. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, "Quantum integrable models and discrete classical Hirota equations,"

*Comm. Math. Phys.*, vol. 188, iss. 2, pp. 267-304, 1997.(Video) Igor Krichever: Algebraic-geometrical methods in the theory of integrable systems...Show bibtex

`@article {bete, MRKEY = {1471815},`

AUTHOR = {Krichever, I. M. and Lipan, O. and Wiegmann, P. and Zabrodin, A.},

TITLE = {Quantum integrable models and discrete classical {H}irota equations},

JOURNAL = {Comm. Math. Phys.},

FJOURNAL = {Communications in Mathematical Physics},

VOLUME = {188},

YEAR = {1997},

NUMBER = {2},

PAGES = {267--304},

ISSN = {0010-3616},

CODEN = {CMPHAY},

MRCLASS = {58F07 (39A10 82B23)},

MRNUMBER = {99c:58076},

MRREVIEWER = {Mayumi Ohmiya},

DOI = {10.1007/s002200050165},

ZBLNUMBER = {0896.58035},

}[n-kr] I. M. Krichever and S. P. Novikov, "A two-dimensionalized Toda chain, commuting difference operators, and holomorphic vector bundles,"

*Uspekhi Mat. Nauk*, vol. 58, iss. 3(351), pp. 51-88, 2003.Show bibtex

`@article {n-kr, MRKEY = {1998774},`

AUTHOR = {Krichever, I. M. and Novikov, S. P.},

TITLE = {A two-dimensionalized {T}oda chain, commuting difference operators, and holomorphic vector bundles},

JOURNAL = {Uspekhi Mat. Nauk},

FJOURNAL = {Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},

VOLUME = {58},

YEAR = {2003},

NUMBER = {3(351)},

PAGES = {51--88},

ISSN = {0042-1316},

MRCLASS = {37K60 (14H60 37K20)},

MRNUMBER = {2004j:37144},

MRREVIEWER = {Igor Yu. Potemine},

DOI = {10.1070/RM2003v058n03ABEH000628},

}[kp] I. M. Krichever and D. H. Phong, "Symplectic forms in the theory of solitons," in

*Surveys in Differential Geometry: Integral Systems*, Somerville: Internat. Press, 1998, vol. IV, pp. 239-313.Show bibtex

`@incollection {kp, MRKEY = {1726930},`

AUTHOR = {Krichever, I. M. and Phong, D. H.},

TITLE = {Symplectic forms in the theory of solitons},

BOOKTITLE = {Surveys in Differential Geometry: Integral Systems},

SERIES = {Surv. Differ. Geom.},

VOLUME={IV},

EDITORS={Terng, C. L. and Uhlenbeck, C. L.},

PAGES = {239--313},

PUBLISHER = {Internat. Press},

ADDRESS={Somerville},

YEAR = {1998},

MRCLASS = {37K10 (14H70 35Q51 37K40 53D30)},

MRNUMBER = {2001k:37114},

MRREVIEWER = {Ian A. B. Strachan},

ZBLNUMBER = {0931.35148},

}[zab] I. M. Krichever and A. Zabrodin, "Spin generalization of the Ruijsenaars-Schneider model, the nonabelian two-dimensionalized Toda lattice, and representations of the Sklyanin algebra,"

*Uspekhi Mat. Nauk*, vol. 50, iss. 6(306), pp. 3-56, 1995.Show bibtex

`@article {zab, MRKEY = {1379076},`

AUTHOR = {Krichever, I. M. and Zabrodin, A.},

TITLE = {Spin generalization of the {R}uijsenaars-{S}chneider model, the nonabelian two-dimensionalized {T}oda lattice, and representations of the {S}klyanin algebra},

JOURNAL = {Uspekhi Mat. Nauk},

FJOURNAL = {Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk},

VOLUME = {50},

YEAR = {1995},

NUMBER = {6(306)},

PAGES = {3--56},

ISSN = {0042-1316},

MRCLASS = {58F07 (16S99 81R10 82B23)},

MRNUMBER = {97f:58068},

MRREVIEWER = {Alexander V. Shapovalov},

DOI = {10.1070/RM1995v050n06ABEH002632},

}[mar] G. Marini, "A geometrical proof of Shiota’s theorem on a conjecture of S. P. Novikov,"

*Compositio Math.*, vol. 111, iss. 3, pp. 305-322, 1998.Show bibtex

`@article {mar, MRKEY = {1617132},`

AUTHOR = {Marini, Giambattista},

TITLE = {A geometrical proof of {S}hiota's theorem on a conjecture of {S}. {P}. {N}ovikov},

JOURNAL = {Compositio Math.},

FJOURNAL = {Compositio Mathematica},

VOLUME = {111},

YEAR = {1998},

NUMBER = {3},

PAGES = {305--322},

ISSN = {0010-437X},

CODEN = {CMPMAF},

MRCLASS = {14H42 (14H40 14K25)},

MRNUMBER = {99a:14039},

MRREVIEWER = {Emma Previato},

DOI = {10.1023/A:1000310019510},

ZBLNUMBER = {0945.14017},

}[mum] D. Mumford, "An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equation," in

*Proc. Internat. Sympos. Algebraic Geometry*, Tokyo, 1978, pp. 115-153.Show bibtex

(Video) Bartosz Naskręcki: Elliptic and hyperelliptic realisations of low degree hypergeometric motives`@inproceedings {mum, MRKEY = {578857},`

AUTHOR = {Mumford, D.},

TITLE = {An algebro-geometric construction of commuting operators and of solutions to the {T}oda lattice equation, {K}orteweg-de {V}ries equation and related nonlinear equation},

BOOKTITLE = {Proc. {I}nternat. {S}ympos. {A}lgebraic {G}eometry},

VENUE={{K}yoto, 1977},

PAGES = {115--153},

PUBLISHER = {Kinokuniya Book Store},

ADDRESS = {Tokyo},

YEAR = {1978},

MRCLASS = {14K25 (14H15 14K10 34C35 34C40 58F07)},

MRNUMBER = {83j:14041},

MRREVIEWER = {D. J. Lewis},

}[wilson] G. Segal and G. Wilson, "Loop groups and equations of KdV type,"

*Inst. Hautes Études Sci. Publ. Math.*, iss. 61, pp. 5-65, 1985.Show bibtex

`@article {wilson, MRKEY = {783348},`

AUTHOR = {Segal, Graeme and Wilson, George},

TITLE = {Loop groups and equations of {K}d{V} type},

JOURNAL = {Inst. Hautes Études Sci. Publ. Math.},

FJOURNAL = {Institut des Hautes Études Scientifiques. Publications Mathématiques},

NUMBER = {61},

YEAR = {1985},

PAGES = {5--65},

ISSN = {0073-8301},

CODEN = {PMIHA6},

MRCLASS = {58F07 (14K99 35Q20 58G35)},

MRNUMBER = {87b:58039},

MRREVIEWER = {A. M. Vinogradov},

URL = {http://www.numdam.org/item?id=PMIHES_1985__61__5_0},

ZBLNUMBER = {0592.35112},

}[serr] J. Serre, "Faisceaux algébriques cohérents,"

*Ann. of Math.*, vol. 61, pp. 197-278, 1955.Show bibtex

`@article {serr, MRKEY = {0068874},`

AUTHOR = {Serre, Jean-Pierre},

TITLE = {Faisceaux algébriques cohérents},

JOURNAL = {Ann. of Math.},

FJOURNAL = {Annals of Mathematics. Second Series},

VOLUME = {61},

YEAR = {1955},

PAGES = {197--278},

ISSN = {0003-486X},

MRCLASS = {14.0X},

MRNUMBER = {16,953c},

MRREVIEWER = {C. Chevalley},

DOI = {10.2307/1969915},

ZBLNUMBER = {0067.16201},

}[shiota] T. Shiota, "Characterization of Jacobian varieties in terms of soliton equations,"

*Invent. Math.*, vol. 83, iss. 2, pp. 333-382, 1986.Show bibtex

`@article {shiota, MRKEY = {818357},`

AUTHOR = {Shiota, Takahiro},

TITLE = {Characterization of {J}acobian varieties in terms of soliton equations},

JOURNAL = {Invent. Math.},

FJOURNAL = {Inventiones Mathematicae},

VOLUME = {83},

YEAR = {1986},

NUMBER = {2},

PAGES = {333--382},

ISSN = {0020-9910},

CODEN = {INVMBH},

MRCLASS = {14H40 (58F07)},

MRNUMBER = {87j:14047},

MRREVIEWER = {Bert van Geemen},

DOI = {10.1007/BF01388967},

ZBLNUMBER = {0621.35097},

}[wel] G. E. Welters, "On flexes of the Kummer variety (note on a theorem of R. C. Gunning),"

*Nederl. Akad. Wetensch. Indag. Math.*, vol. 45, iss. 4, pp. 501-520, 1983.Show bibtex

`@article {wel, MRKEY = {731833},`

AUTHOR = {Welters, G. E.},

TITLE = {On flexes of the {K}ummer variety (note on a theorem of {R}. {C}. {G}unning)},

JOURNAL = {Nederl. Akad. Wetensch. Indag. Math.},

FJOURNAL = {Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae},

VOLUME = {45},

YEAR = {1983},

NUMBER = {4},

PAGES = {501--520},

ISSN = {0019-3577},

CODEN = {IMTHBJ},

MRCLASS = {14H40 (14K10)},

MRNUMBER = {86e:14010},

MRREVIEWER = {David Ortland},

}[wel1] G. E. Welters, "A criterion for Jacobi varieties,"

*Ann. of Math.*, vol. 120, iss. 3, pp. 497-504, 1984.Show bibtex

`@article {wel1, MRKEY = {769160},`

AUTHOR = {Welters, G. E.},

TITLE = {A criterion for {J}acobi varieties},

JOURNAL = {Ann. of Math.},

FJOURNAL = {Annals of Mathematics. Second Series},

VOLUME = {120},

YEAR = {1984},

NUMBER = {3},

PAGES = {497--504},

ISSN = {0003-486X},

CODEN = {ANMAAH},

MRCLASS = {14H40 (14K10)},

MRNUMBER = {86e:14011},

MRREVIEWER = {David Ortland},

DOI = {10.2307/1971084},

ZBLNUMBER = {0574.14027},

}